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Abstract—In this study, we present several transformer-based
models as well as traditional machine learning methods to
detect semantic textual similarity (STS) in clinical notes. We
investigate transformer models pretrained on general English
as well as clinical notes, and use generic English STS datasets
as a supplemental corpus to clinical notes data. Our work is
based on the 2019 National NLP Clinical Challenge (n2c2).
We identify and annotate six types of sentences in the clinical
notes corpus, and report an ensemble method that combines
attention-based contextualized embeddings with a similarity score
based on the MeSH ontology obtained by computing least
common ancestors of clinical terms. Our approach does not need
additional clinical data for model training, while still achieving
comparable Pearson’s correlation coefficient of 0.901.

Index Terms—Electronic Health Records, Natural Language
Processing, Clinical Semantic Textual Similarity, Transformers,
MeSH

I. INTRODUCTION

Hospitals collect vast amounts of textual data every day
that contain information critical for medical decision-making,
analysis, and a variety of other healthcare applications. Clin-
ical care is often documented in free-text narrative, which
includes several types of patient information such as family
history, recent medical history, and medical imaging outcome
interpretations as examples that are not easily captured in the
coded form [1]. Electronic health record (EHR) systems have
improved healthcare efficiency, but they have also resulted in
poorly organized or incorrect documentation, as well as low-
quality data samples largely due to a significant amount of
redundant text, errors, and incompleteness due to the frequent
and growing use of templates and copy-paste in Electronic
Health Record (EHR) systems [2]–[4].

Thus, it is imperative to develop solutions that can condense
information while retaining its value. In this context, measur-
ing the degree of semantic resemblance between clinical text
snippets, i.e., clinical semantic textual similarity (STS), can
play a crucial role in alleviating redundancy and highlighting
new information [5]. Further, improvements in measuring
textual similarity can help in the development of other clinical
applications such as clinical question answering with evidence-

based retrieval, clinical text summarization, semantic search,
conversational systems, and clinical decision support [3].

STS has long been recognized as a fundamentally important
task in natural language processing (NLP). Consequently,
several semantic evaluation (SemEval) STS tasks have been
organized [6]–[11]. These, however, only dealt with general
English texts. Clinical language, on the other hand, is highly
specialized and domain-specific. General STS solutions, thus,
cannot be readily applied in the clinical domain.

Studies in clinical STS, such as [12]–[15], are far fewer due
to the scarcity of data to generate and benchmark annotated
corpora. In this work, we present STS in the clinical domain,
employing the framework of the 2019 National NLP Clinical
Challenge (n2c2)/Open Health Natural Language Processing
Consortium (OHNLP) track on clinical semantic textual simi-
larity (ClinicalSTS) [16]. This task provides a critically needed
resource, without which clinical STS would not be able to
leverage the advances of modern NLP research.

Neural models for STS have often used encoders to obtain
embeddings, which are abstract representations of text in a
semantic vector space, followed by a regression layer to arrive
at the final similarity score [17]. Such models can be pretrained
by learning generalizable language representations, which are
helpful for downstream NLP tasks and minimize the need of
training new models for most specific tasks [18], [19]. These
pretrained representations allow users to extract semantic
information from enormous amounts of unlabeled text data on
a range of general natural language tasks, including STS [19].
This approach, however, is not directly applicable in low-
resource settings. Typically, in such cases, the approach has
been to fine-tune a large pre-trained model on task-specific
data. Our task, however, uses the MedSTS dataset [20] with
1,642 annotated samples that are densely packed with clinical
terms. Thus, only very limited fine-tuning can be done using
this corpus alone. The contextualized embeddings, on the other
hand, are unlikely to succeed in the target task if the target
domain differs significantly from the pretraining corpus [21].
Moreover, fine-tuning studies are potentially unstable since
they rely on the pretrained encoder parameters to be relatively
close to an optimal configuration for the target task [22].



Motivated by these observations, we provide empirical com-
parisons of several transformer models pretrained on general
English corpora with those pretrained using clinical corpora.
We also investigate the effect of fine-tuning on clinical data
using additional in-domain corpora. Additionally, we employ
a similarity metric based on the MeSH [23] ontology, and
examine the impact of combining it with transformer-based
language models. Our experiments demonstrate that combin-
ing the ontology-based similarity with the traditional approach
(i.e., a regression layer after the transformer), is competitive
with other state-of-the-art results on this n2c2 clinical STS
benchmark corpus.

II. RELATED WORK

Semantic textual similarity (STS) is a task to quantitatively
assess the similarity between the meaning of two text snippets.
It is commonly addressed as a regression problem, with a real-
value score used to reflect the degree of semantic similarity
between two pieces of text.

A. Early research in semantic textual similarity
Early research in both the general and clinical domains cen-

tered on methods including lexical semantics, basic syntactic
similarity, surface form matching, and alignment-based ap-
proaches [24]–[26]. The motivations behind these approaches
are identification, alignment, and scoring of semantically-
related words and phrases before a piece-wise aggregation of
the scores. In this sense, this body of work bears resemblance
with early work in machine translation.

However, due to the lack of a consistent method for merging
semantic information, sentence representations were used [27],
[28]. While this was an improvement over preceding work, it
did not consider the context when creating distributed rep-
resentations, thereby leaving considerable room for improve-
ment. Consequently, STS and related areas of natural language
processing saw multiple attempts at generating richer repre-
sentation to encode the linguistic characteristics of a phrase.
For STS in particular, this includes paragraph vectors [29]–
[31], representation weighting and component removal [32],
and convolutional deep structures [33], [34].

B. Language models and task-specific transfer learning
On the other hand, recent advances in learning sentence

representation have used pretrained language models [19],
[35], [36]. The bidirectional encoder representations from
transformers, or BERT [19], employs the transformer archi-
tecture proposed by Vaswani et al. [37] to create rich sentence
representations that achieve state-of-the-art results in a variety
of downstream NLP tasks. Their success has lead to the
development of domain-specific variants like BioBERT [38],
which have found success in medical language tasks [39].
Whether for general representations or domain-specific ones,
the usual approach in prior work has been to employ language
models obtained through pretraining on a large amount of data,
and then fine-tune the model parameters for the target task –
in the spirit of transfer learning – often with the addition of a
task-specific output layer.

C. Semantic similarity of clinical texts

Only recently has clinical STS has received a lot of atten-
tion, primarily through the n2c2 tasks [16], [20]. In these tasks,
performance has been measured by computing the Pearson
correlation coefficient (r) between text-pairs.

The clinical STS 2018 n2c2 submissions combined tradi-
tional machine learning algorithms like random forests with
more recent neural architectures, including recurrent and
convolutional neural networks. Pertaining to our work, of
special interest is the approach taken by Chen et al. [40],
who incorporate several linguistic features with deep learning
models to achieve the best result (r = 0.833).

Subsequently, a much larger competition was held in 2019,
where the top-performing approaches used state-of-the-art
neural models together with pretraining and fine-tuning. The
best result (r = 0.901) was achieved by Mahajan et al. [41],
who used ClinicalBERT for multi-task learning. Their ap-
proach required a significant amount of additional training on
intermediate labeled tasks, and employed several additional
publicly available corpora: the SemEval 2017 Semantic Tex-
tual Similarity Benchmark (STS-B) [11], medical question
entailment [42], clinical natural language entailment [39], and
Quora question pairs [43]. This work also created and used
two additional datasets – one on sentence-level topics, and
another on drug named entity recognition. In natural language
semantics, similarity and entailment are closely interlinked,
so much so that general STS has been investigated purely
as an entailment problem (e.g., Castillo and Estrella [44]).
It is therefore not surprising that training a neural model on
multiple entailment datasets leads to excellent performance.
Progressing along this line of work, however, makes clinical
STS reliant on parallel progress along other NLP tasks.

Another competitive approach – interesting in its deviation
from the traditional use of a regression layer – saw the
incorporation of an ensemble algorithm into BERT, where the
regression head was duplicated before applying an adapted
training strategy to facilitate the focus of these multiple heads
on different input patterns in the text [45]. A graph-based
similarity measure was used to compute the final similarity
score between two pieces of texts, to achieve r = 0.897.

BERT and its variants were also combined with various
forms of domain knowledge embeddings. Chang et al. [46]
used BERT to encode text-pairs (i.e., to obtain a vector
representation for each datum in the task corpus), while
also constructed knowledge graphs based on the sentences
to model the various concepts present in them. Finally, they
used graph convolutional networks to encode these knowledge
graphs. An ensemble of different language model variants for
knowledge distillation, and taking a final ensemble of the
language models after incorporating data augmentation and
the knowledge graph encoding, yielded the best performance
of r = 0.882. On the other hand, Xiong et al. [47] added
character- and entity-level embeddings to augment BERT.
Compared to the construction of knowledge graphs for each
text-pair, this approach is lightweight, where the only use of



TABLE I
SIMILARITY SCORE DISTRIBUTION FOR SENTENCE-PAIRS

Dataset # Pairs [0, 1] (1, 2] (2, 3] (3, 4] (4, 5]

ClinSTS (train) 1,642 312 154 394 509 273
ClinSTS (test) 412 238 46 32 62 34
STS-G 28,518 3,318 2,915 4,750 9,326 8,209

external domain knowledge comes in the form of encoding
medical entities by their MeSH representations.

Our approach bears resemblance with the above body of
work in that we, too, employ general and domain-specific lan-
guage models, and make use of additional domain knowledge.
We do not, however, rely on corpora of other tasks distinct
from STS (such as entailment or question-answering). Our
approach also requires significantly less training because we
make direct use of the MeSH ontology. We accomplish this
by computing the least common ancestor (LCA) of medical
entities in MeSH, instead of training neural networks to encode
the entities for subsequent use in the regression layer of a
neural architecture. Furthermore, we identify six distinct types
of texts in the clinical STS task, and exploit this insight in
our ensemble method. Our approach employs fewer additional
datasets and requires less training, but nevertheless achieves
state-of-the-art performance with r = 0.901.

III. DATA AND EVALUATION

In this paper, we use the corpus distributed for the 2019
n2c2 clinical STS task. This is a gold-standard annotated
subset of the MedSTS corpus, which is a large collection
obtained from de-identified clinical notes of patients receiving
their primary care at Mayo Clinic [3]. The annotated subset for
the 2019 n2c2 clinical STS task consists of 1K sentence-pairs,
plus the dataset from the 2018 clinical STS task. In both years,
two clinical experts independently annotated each sentence-
pair to provide a score in the continuous range 0 (complete
dissimilarity) to 5 (complete semantic equivalence). The inter-
rater agreement for both rounds is given by the weighted
Cohen’s kappa scores, κ = 0.6 and κ = 0.67, respectively.
The final dataset comprises 1,642 sentence-pairs in the training
set, and an additional 412 sentence-pairs in the test set.

Given the small size of the training data, we also use non-
clinical STS data from the SemEval shared tasks 2012-2017
[6]–[11]. These dataset provide pairs where understanding
semantic similarity requires the identification of multi-word
expressions, recognition of named entities, or accessing ency-
clopedic knowledge. But they offer relatively poor coverage
of other semantic challenges such as resolving ambiguous
synonymy based on context, active/passive voice, the scope
of operators, and other lexical variations. This weakness of
existing STS corpora is noted by Marco et al. [48], who
develop a collection of about 10K pairs of sentences involving
compositional knowledge (SICK) to fill this gap. In one leg
of our experiments, we combine the SemEval STS corpora
with the SICK collection to investigate the performance of
transformer-based language models (see Sec. IV-B). This

yields a much larger collection of 28,518 sentence-pairs with
gold-standard annotations, which we dub STS-G. Table I
shows the distribution of the gold-standard semantic similarity
scores in the datasets we use.

For evaluation, we adopt the same measure as used in the
original n2c2 clinical STS task: Pearson correlation coefficient
(r) between the predicted similarity scores and the average of
the two clinical expert judgments.

In addition to the sentence-pair data, we also utilize the
MeSH ontology (for details, see Section IV-C). This is similar
in spirit to the use of external dictionaries in – among other
healthcare applications of NLP – clinical decision support
systems. However, the use of medical dictionaries require
careful engineering of heterogeneous data sources, increasing
the possibility of errors in a pipeline. It also necessitates
pre- and post-processing steps to handle complex expressions
like multi-word entities and non-standard acronyms. Ontology-
based approaches, while comparable to the use of dictionaries
in some ways, focus on the use conceptual knowledge rep-
resentation, often categorized by fine-grained semantic types.
This enables the exploitation of both hierarchical and non-
hierarchical relationships between entities. An ontology like
MeSH, for instance, instantly allows for processing infor-
mation of the type “Aspirin is-a antipyretic” – a capability
typically not found in dictionaries. Overall, when it comes
to incorporating domain knowledge beyond a given corpus,
a structured ontology offers both theoretical and practical
advantages over the use of dictionaries. This motivates our
use of MeSH over other available resources.

IV. EXPERIMENTAL APPROACHES AND RESULTS

To understand clinical STS, our experimental approach is
three pronged: (A) develop an ensemble model that combines
neural language models with several text similarity metrics,
(B) investigate combinations of transformer-based language
models in conjunction with regression, and (C) use the MeSH
ontology to directly inject similarity scores for entity-pairs
into the computation of semantic similarity for pairs of texts.
This third approach allows for the extrapolation of similarities
across entities from the training set.

A. Combining Deep and Shallow Learning Techniques

To obtain the semantic similarity score between sentence
pairs, we first look into combining traditional machine learning
algorithms with state-of-the-art neural models. We use three
language models based on the transformer architecture. First,
we employ a universal language model that combined the
pre-trained bidirectional transformer language model BERT
with multi-task learning. This model, called multi-task deep
neural network (MT-DNN) [49], has been shown to outperform
BERT in several natural language understanding benchmark
tasks. Further, we use SciBERT [50] and BioBERT [38],
which are pretrained on the same masked language modeling
and next sentence prediction tasks as the original language
model developed by Devlin et al. [19], but on vast amounts
of biomedical text.



Fig. 1. Combination of Deep and Shallow Learning Techniques.

One common hurdle in natural language tasks is that a
single entity may be mentioned in multiple synonymous lexical
forms. Entity linking is the process of connecting all the
textual mentions of an entity to a canonical representation [51].
The typical approach, especially when knowledge bases of
such canonical representations exist, has been to use thesauri
to perform entity linking. We adopt this approach, and use the
unified medical language system (UMLS) metathesaurus [52]1.
To link medical entities, we replace all medical terms with
their UMLS preferred terms2 We implement the mapping of
each entity to its preferred term, we use the MetaMap tool [53].

As depicted in Fig. 1, our input is a collection of several
string similarity measures together with an encoding for the
sentence pair. For the string similarity measures, we compute
multiple token-based, sequence-based, and vector-space met-
rics. Next, we use SciBERT to obtain the vector representation
of each sentence in a pair, and concatenate them using the
separator [SEP] token. We thus obtain a single vector repre-
sentation for each sentence pair. This representation, together
with the similarity measures, form the input vector

We perform feature selection on this input vector, by
training a Lasso model and discarding the weakly correlated
features with vanishing coefficients, since these features make
no contribution to the prediction. On the feature vector thus ob-
tained, we test a variety of models: support vector regression,

1UMLS brings together several biomedical vocabularies to enable interop-
erability. For instance, the entity “oral anticoagulant” and all its commonly
used variations are mapped to a single canonical concept in UMLS.

2Every UMLS concept has a unique concept identifier, as well as a
canonical preferred term.

TABLE II
TRANSFORMER-BASED MODELS AND THEIR TRAINING CORPORA

Language model Pretraining data

RoBERTa Wikipedia + Books Corpus
BioBERT Wikipedia + Books Corpus + PubMed + PMC
ALBERT English Wikipedia + Books Corpus
PubMedBERT PubMed abstracts and articles
SciBERT Semantic Scholar
XLNet Books Corpus + Wikipedia + ClueWeb 2012-B
Bio ClinicalBERT MIMIC III database

random forest, gradient boosting regression tree, k-nearest
neighbor, and extreme gradient boosting.

The ensemble of these traditional models achieve a better
score than any individual traditional model. Additionally, the
ensemble of these traditional models with the neural language
models perform better than the neural language models alone.
This leg of our experiments comprise many different experi-
ments with various model parameters (e.g., the regularization
parameter for feature selection using Lasso regression) and
choice of language model. For the sake of brevity, we omit
the details and present the best model, where we use SciBERT
and achieve r = 0.868.

B. Learning similarity through Transformer-based models

Our first approach, as described above in Section IV-A,
suffers largely due to the small size of the training data.
To alleviate this concern, we employ the STS-G dataset (see
Section III) and investigate several transformer-based language
models, both domain-specific and general.

Due to their ability to internally deploy attention mech-
anisms, transformer-based models are capable of simulating
syntactic and semantic constructs in language. It is perhaps
due to this reason that such models find success in a variety
of downstream tasks with limited fine-tuning, as long as the
task employs language in a similar domain and/or genre. For
different domains, however, the pretraining data is known to
have significant effects on the model, since the vocabulary
tends to differ as well. Consequently, several models have
been developed on the same transformer architecture, but
with different data for pretraining. Next, we provide a brief
discussion of these models. We would also like to draw
attention to Table II, which displays the corpora used for
pretraining these models3.

Language Models: RoBERTa, ALBERT, and XLNet are
models that were trained on large amounts of general English
language data. RoBERTa [55] uses the same transformer
architecture, but builds on BERT with significant changes in
hyperparameter choices. It also removes the next sentence
prediction from the pretraining process, and trains with much
larger batch sizes and learning rates. ALBERT [56] is a
lightweight BERT model, in the sense that it uses parameter-
reduction techniques for faster training. It is also known to
better capture inter-sentence semantics than the original BERT

3For details about the Books Corpus, see Zhu et al. [54].
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S1: A dog, which is large and gray, is carrying a ball ...

S2: A large, gray ball is hitting a running dog, which ...
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Transformers
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S1: Patient arrives, via hospital wheelchair, Gait steady,....
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Fine-tuned Transformers on 

ClinicalSTS train Set

S1: The patient was seen in collaboration...

S2: The patient was agreeable with the ...
0.0 dissimilar

...

5.0 Identical

Fig. 2. The two-stage training strategy for clinical STS.

model. XLNet [57] is a transformer-based model that uses
autoregressive methods to learn bidirectional contexts in the
language. Unlike the other models described here, XLNet
uses a data permutation method for training instead of the
more standard masked language modeling. It thereby avoids
data corruption and reconstruction, and better captures the
dependency between word positions.

With the exception of SciBERT, which is trained on research
articles from multiple scientific disciplines, the other models
we use are specific to the medical domain. SciBERT [50] is
trained using an architecture identical to BERT’s base model.
It, however, uses different initialization weights because it uses
its own custom vocabulary. This vocabulary includes a large
number of tokens that are not relevant to the language used in
clinical notes. Moreover, its restriction to 30K subwords also
plays a role in preventing several medical terms from being
modeled. BioBERT [38] uses the same architecture as BERT’s
base model, and is trained with identical weights. It only
differs in the additional domain-specific training with medical
research publications. Bio ClinicalBERT [58] is trained on
notes from the MIMIC III corpus [59], a large collection
containing EHRs. In terms of domain-specific pretraining, it is
a likely candidate to deliver excellent performance on a task
that uses clinical notes. The size of the pretraining corpus,
however, is smaller than the ones used by most other language
models. Another domain-specific model is PubMedBert [60],
which constructs a domain-specific vocabulary with 3.1 billion
words (21GB of data, compared to the 16 GB used by BERT).
The abstracts and full biomedical articles are used to train a
BERT (base) architecture from scratch.

Before moving toward describing our approach to training
and fine-tuning various models, we would like to highlight
that most transformer-based models provide two encoder ar-
chitectures: “base” and “large”. The main difference between
them is the number of layers. For example, the BERT-base
model features 12 layers of transformer encoder layers, 768

hidden units in each layer, and 12 attention heads, while the
BERT-large consists of 24 transformer layers with a hidden
size of 1,024 and 16 attention heads.

C. Learning similarity from the MeSH ontology

Training Strategy: We use the transformer-based models to
learn distributed sentence-level representations from sentence
pairs. The linear regression layer then uses these distributed
encodings to obtain a similarity score between 0 and 5. Our
training comprises two steps. First, we take a pretrained model
and further train it on the STS-G corpus, which is a dataset for
general semantic similarity. Second, we fine-tune the model
using the training data from the clinical STS dataset. In
both steps, hyperparameters are optimized by 5-fold cross
validation. We use a learning rate η = 10−5. Our experiments
varied the batch size between 3 and 4, and the number of
epochs between 2, 4, and 8.

To create distributed representations, each transformer is
deployed. To train our clinical STS models, we use a two-
step technique as shown in Fig. 2. In the first step, the STS-G
corpus was employed to fine-tune an intermediate STS model.
Using the ClinicalSTS corpus, the intermediate model was
fine-tuned even further in step 2. The fine-tuned model from
the second phase was used for final testing. We employed 5-
fold cross-validation to optimize hyperparameters in both step
1 and step 2 of training. We use η = 10−5 as a learning
rate and tested batch size selected as 3 and 4 and the number
of epochs are also tested as 2,4, and 8. The epoch number,
batch size, and learning rate were all adjusted based on the
cross-validation findings.

We use the PyTorch-based models from the HuggingFace
transformers in our experiments [61], [62]. The RoBERTa-
large model outperforms all the others with a Pearson cor-
relation coefficient of 0.896. For RoBERTa and XLNet –
both pretrained on general English language data – the large
models perform better, as expected. Surprisingly, BERT’s large
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Fig. 3. The MeSH descriptors are arranged in logical hierarchical groups (families), and a term may appear in multiple nodes/locations in the hierarchy, as
shown for “Arsenic Acid” here. Semantically similar terms are closer together in this structure, which motivates us to compute the least common ancestor of
term-pairs as a way of computing the similarity of paired sentences in the clinical STS dataset.

and base models show nearly equivalent results (0.867 and
0.868, respectively). In every case, the models pretrained using
general English corpora (both large and base) outperformed
their corresponding domain-specific counterparts pretrained
using clinical notes from the MIMIC-III dataset. We conjecture
this is due to the relatively (and significantly) smaller size of
the MIMIC-III data. These results, along with the results of
our other experiments, are shown in Table IV.

The ClinicalSTS dataset indicates two features that we
take into account when approaching this task. First, due to
inadequate training data, constructing reliable learning models
is difficult without augmentation with additional training data.
Second, medical entities have a natural hierarchical group-
ing, based on their pharmacologic action or their chemical
structure (drug entities), their biological function (anatomical
or microbial entities), etc. These relative differences and
similarities cannot be resolved simply by entity linking. There
is an obvious need to include a domain-specific ontology to
incorporate this knowledge.

To this end, we utilize Medical Subject Headings
(MeSH) [23], a medical ontology produced by the National
Library of Medicine. It is used to index and catalog medical
documents based on key concepts present in those documents
(e.g., research articles in the MEDLINE database4. MeSH of-
fers a controlled vocabulary, much like UMLS, for biomedical
concepts. It also offers an extensive hierarchy of such concepts
in the form of headings (also called “major headings” or
“descriptors”). The hierarchy consists of 16 major branches
(including “Anatomy”, “Organisms”, “Diseases”, “Chemicals
and Drugs”, etc.).

In spite of the availability of such knowledge bases as MeSH
or UMLS, the nearness of two medical terms is not always

4https://www.nlm.nih.gov/medline/index.html

obvious. Fig. 3 shows how these headings are organized into
logical hierarchical groups, and that a single term (Arsenic
Acid) can be a member of multiple groups in the hierarchy,
where each group membership is valid due to some specific
property of the term.

Clinical sentence types: In no small part due to the above
reasons, determining the extent of semantic similarity is par-
ticularly difficult for clinical texts. For clinical notes, however,
we observe that the text may be viewed as belonging to a
particular category, based on the type of information it conveys
(e.g., diagnosis, discharge). We thus tag each sentence with
one of six labels. Next, we explain these types along with
example sentence-pairs (S1, S2) and their semantic similarity
scores (σ ∈ [0, 5]) from the clinical STS dataset.

1. MED. All medications, either prescribed or over the counter.
It has information such as the medication name, dose, route,
and frequency.
(S1) Oxycodone [ROXICODONE] 5 mg tablet 0.5-1 tablets
by mouth every 4 hours as needed.
(S2) Pantoprazole [PROTONIX] 40 mg tablet enteric
coated 1 tablet by mouth Bid before meals. (σ = 1)

2. EDU. Contains information that allows patients and their
caregivers to understand their disease and treatment plan.
(S1) The patient’s caregiver was ready to learn without
barriers and understanding of the plan provided.
(S2) The patient will verbalize understanding of splint wear
and care following one treatment session. (σ = 1.25)

3. ADM/DISCH. These include, but are not limited to, ad-
mission status (inpatient, ambulatory, etc.) for admitting
diagnosis, information on the attending physician, vital sign
parameters, known or observed allergies/reactions.
(S1) Patient appears comfortable, Patient cooperative,
alert, Oriented to person, place and time.



(S2) History obtained from patient, Patient appears, anx-
ious, Patient cooperative, alert, Oriented to person, place
and time. (σ = 3.1)

4. REC. Includes administrative and billing data, patient de-
mographics, progress notes, allergens, allergies, radiology
images, lab and test results.
(S1) The lesion was excised from within the subcutaneous
tissue down to fascia.
(S2) The larynx was examined, specifically the supraglottis,
true vocal folds, and subglottis. (σ = 0)

5. DIAG. Conveys information about the signs and symptoms
of the patient.
(S1) There is no lower extremity edema present bilaterally.
(S2) There is a 2+ radial pulse present in the upper
extremities bilaterally. (σ = 1)

6. CON. Conveys information about consent before conducting
an intervention or to disclose personal information.
(S1) The above was discussed with the patient, and she
voiced understanding of the content and plan.
(S2) Patient was provided with written patient education
materials and she relates a good understanding of the self-
management program. (σ = 1.5)

Ontological similarity based on “least common ancestor”:
To determine how closely related two terms are, we investigate
a remarkably simple method of directly and explicitly utilizing
the tree-structure of the MeSH ontology: the least common
ancestor (LCA) algorithm [63]. This is in contrast with other
approaches that create abstract embeddings from knowledge
graphs or ontologies (e.g., Chang et al. [46] and Xiong et
al. [47]). Our motivation behind exploring this is obvious,
since less similar terms will be further apart (and hence have
a common ancestor further away from their own descriptor
locations). Highly similar terms, on the other hand, will
have a common ancestor closer to their own descriptors. As
noted earlier, a term may appear in multiple locations within
the MeSH hierarchy, so we iterate over all possible tree-

Algorithm 1 Collect all the tree nodes corresponding to terms
appearing in MeSH
for each (S1, S2) in sentences do

phraseIDs1, phraseIDs2 = set of all possible IDs of MeSH
searchable phrases in S1, S2
for phrase A ∈ phraseIDs1 do

for phrase B ∈ phraseIDs2 do
if (phrase A ̸= phrase B) then

trees A = set of all the tree nodes where phrase
A is contained in the descriptor
trees B = set of all the tree nodes where phrase
B is contained in the descriptor
LCA = maxLCA(trees A, trees B)

end
end

end
end

Algorithm 2 maxLCA(tree set A, tree set B)
Result: The maximum LCA score across all tree-pairs
max LCA = 0

for tree A ∈ tree set A do
for tree B ∈ tree set B do

max LCA = max(max LCA, σLCA(tree A, tree B))
end

end
return max LCA

pairs corresponding to the term-pairs obtained from the two
sentences S1 and S2.

We begin by querying MeSH for all the terms in the
training set of the clinical STS dataset, and then locally storing
those entities (term, MeSH unique ID, tree locations). For
example, the word “via” appears in multiple MeSH entities,
each having its own unique ID, and these IDs can appear in
several locations in the ontology tree. Clearly, not all words
are relevant for the computation of semantic similarity from
the clinical/medical perspective. So, we extract noun phrases
from each sentence, and check whether the phrase is contained
in at least one MeSH entry. If so, we collect all MeSH IDs
associated with this phrase. We use ScispaCy [64] to extract
noun phrases, and iterate over these phrases to obtain the
corresponding tree nodes as shown in Algorithm 1.

We then compute LCA across the two sets of tree nodes,
and retain the maximum over all the pairs, as shown in
Algorithm 2. Each LCA score is based simply on a traversal
of the two tree paths, where the score is initially set to 0, and
incremented for each matched node. The pseudocode for this
computation is shown in Algorithm 3.

To implement this approach, we use E-utilities [65], which
is the public API to the NCBI Entrez system, giving access to
all Entrez databases, including PubMed, PMC, Gene, Nuccore,
and Protein. This API is a collection of eight server-side pro-
grams that accept a fixed URL syntax for searching, linking,
and retrieving data. We specifically use two APIs available
as part of E-utilities: the combination ESearch (send a text
query to a single Entrez database) and EFetch (retrieve the
full record for a MeSH ID). Upon sending a text query, we
get a list of all the MeSH IDs where that text (i.e., word or
phrase) appears. We then use EFetch to obtain the complete

Algorithm 3 σLCA(tree A, tree B)
Result: LCA score for a pair of trees
LCA = 0 for i = 0 to min(len(tree A), len(tree B)) do

if tree A[i] == tree B[i] then
++LCA

end
else

break
end

end
return LCA



TABLE III
SENTENCE TYPE DETECTION: CLASSIFICATION RESULTS ON THE

CLINICAL STS TEST SET

Type Precision Recall F1 Support

ADM/DISCH 1.00 1.00 1.00 24
MED 0.99 0.99 0.99 99
REC 0.90 0.91 0.90 127
DIAG 0.91 0.91 0.91 137
CON 0.97 0.98 0.98 113
EDU 1.00 0.95 0.98 42

records for each of these MeSH IDs. In particular, we use tree
numbers in the query’s result, since it shows us the subtrees
where the phrase belongs. The relevance of this detail can
be seen in Fig.3, where the chemical category “Arsenicals”
appears at two separate nodes in the tree. The MeSH tree
number is shown in parenthesis for each node.

Directly using the LCA computations with the MeSH on-
tology is an attractive option to measure clinical STS, due
to the simplicity of this approach. However, our analysis
reveals that this approach performs well only in the MED
type sentences. The other five types often do not contain
medication information, and therefore, most terms in such
sentences understandably do not appear in the MeSH ontology.

Any use of the sentence type knowledge, of course, relies
on being able to accurately classify sentences from clinical
notes as belonging to one of the six types. We experiment with
several multi-label classification algorithms, including random
forest classifier, support vector machines, multinomial naı̈ve
bayes, and logistic regression. We use the Scikit-learn library
for these experiments [66]. With an accuracy of 0.91, linear
SVC outperforms all the other classifiers. The precision, recall,
F1 score, and support across all six sentence types in this
sentence-type detection are shown in Table III.

Among all the transformer-based models we investigated,
RoBERTa-large showed the best result (r = 0.896), as shown
in Table IV. To combine the advantages of the MeSH ontology
with the deep neural models, we thus consider only the
RoBERTa-large model for further experiments. Adding the
LCA score as an additional feature (and thereby increasing
the dimension of the input vector for a sentence-pair by 1)
does not yield any significant improvement in the final Pearson
correlation coefficient. Looking at the dataset in terms of the
six sentence types, however, we discover that for the MED
sentences, the LCA score is a better predictor of the regression
task than RoBERTa-large. Therefore, we combine the best of
both worlds, and use the LCA score for MED sentences while
still employing the best transformer-based model, RoBERTa-
large, to predict the similarity of other sentence types. We
repeat this ensemble for the other five sentence types as well,
but observe no significant difference in the Pearson correlation
coefficient values on the test set.

Table IV shows the final prediction performance of our
models, along with the best results from prior work on this
task. Our combination of LCA with RoBERTa-large (ap-
plied posterior to sentence-type classification on the test set)

TABLE IV
PERFORMANCE COMPARISON ON THE CLINICAL STS TEST SET.

Model Pearson

BERT-base-uncased 0.868
BERT-large-uncased 0.867
RoBERTa-base 0.879
RoBERTa-large 0.896
ALBERT-base-v2 0.870
XLNet-base-cased 0.867
XLNet-large-cased 0.875
Bio ClinicalBERT 0.868
BioBERT-v1.1 0.856
PubMedBERT-base-uncased-abstract 0.885
PubMedBERT-base-uncased-abstract-fulltext 0.885
SciBERT 0.866
Our best performing model(RoBERTa-large), LCA 0.901

Multi Task Learning, ClinicalBERT [41] 0.901
M-heads, BERT [45] 0.883
CNN, BERT-based transformers [67] 0.896
GCN-based graph encoders, BERT-based transformers [46] 0.882
Character-level information, BERT [47] 0.868

achieves an overall score r = 0.9011, narrowly surpassing5

the previous state-of-the-art (r = 0.9010) on this clinical STS
dataset [41], and significantly outperforming many others.

V. CONCLUSION

In this study, we look at three different approaches to the
Clinical STS challenge. First, we use an ensemble machine
learning framework based on string similarity measures to
account for a variety of explainable features, such as cosine
similarity of domain-specific embeddings. Second, we design a
system that can use several transformer algorithms and present
transformer-based models for evaluating clinical STS. In our
work, RoBERTa with the large architecture outperforms the
other attention-based language models investigated. Finally,
we identify a remarkably lightweight and simple approach
of incorporating the MeSH ontology for this task, where
the lowest common ancestor (LCA) of medical terms in the
hierarchy is computed and used as a signal for semantic
similarity.

Our work also offers additional insight into the nature of
clinical notes, from the perspective of computational linguists.
We observe that sentences in clinical notes can be broadly
categorized based on the type of clinical information conveyed.
In light of this, we label the sentences in the clinical STS
corpus as one of six different categories. Further, we find that
even if two sentences are similar in terms of syntactic structure
and the non-medical vocabulary present in them, their clinical
meaning and significance may be vastly different (e.g., because
the drugs mentioned are different). Based on these insights –
and the intuition that the active ingredient in the drug would be
the most important component in determining the difference
between two sentences – we employ the MeSH ontology and
compute the semantic similarity of medical terms using the
lowest common ancestor (LCA) of the terms in the MeSH type

5This difference between our best result and the best result reported by
Mahajan et al. [41] is, however, not statistically significant.



hierarchy. We find that the approach based on using the MeSH
hierarchy works extremely well on sentences that explicitly
mention pharmaceutical products and their dosage, while the
embeddings obtained from training attention-based language
models on domain-specific data perform better for any other
clinical texts. Consequently, by combining the LCA measure
and the best performing language model, we achieve state-of-
the-art result, predicting the similarity scores of human clinical
experts with a Pearson’s correlation r = 0.9011.
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